C5 - Water chloride ion (Cl-) dosage - Water conductivity determination

1.Water chloride ion (Cl-) dosage

1.1. Principle : $Cl^{-}_{water} + AgNO_{3 \text{ silver nitrate in burette}} \rightarrow AgCl_{silver chloride precipitate} + NO_{3}^{-}$ Potassium chromate $K_2Cr_2O_4$ in demineralized water is a yellow compound. It is an end reaction indicator : the first quantities of surplus silver Ag^+ ions, give, with potassium chromate, a red precipitate : $2 \operatorname{Ag}^{+} + \operatorname{Cr}_2 \operatorname{O}_4^{2} \xrightarrow{2} \operatorname{Ag}_2 \operatorname{Cr}_2 \operatorname{O}_4 \operatorname{red precipitate}$ Data : $M AgNO_3 = 108 + 14 + 48 = 170 g / mol$ $C = 2.818 * 10^{-2} \text{ mol AgNO}_3 / L$ **1 mL AgNO_{3 poured}** = 2.818×10^{-5} mol AgNO₃ react with 2.218 $\times 10^{-5}$ mol Cl- = **1 mg Cl**⁻⁵ water Field of application : 0.5 to 15 mg Cl⁻ in 100 mL water test volume (WTV) : 5 to 150 mg Cl⁻/ L 1.2. Procedure Test water volume : 100 mL (be careful to the amount of chloride) Add 1 mL of potassium chromate : solution is yellow Pour, with burette, silver nitrate until appearance of permanent brown - red precipitate

2. Water conductivity determination

2.1. Principle :

Conductivity is the water property to conduce electric current ; it depends on the kind of dissolved ions, their concentration, and temperature.

Reminder :

Resistor (ohms Ω) = Voltage / Intensity (A)

G $_{conducatance}$ (Siemens S) = 1 / R

Sensor description : it is constituted by 2 electrodes between which a given voltage is applied. Resistor measure or electric conductance measure of a water volume delimited by these two parallel platinum electrode :

R is the water volume resistor (Ω), S its surface (cm²), L its width (cm) The resistivity is $\rho: \rho(\Omega, m) = R * S / L$ The **conductivity** γ is : γ (S. cm -1) = 1 / $\rho = 1/R * L / S$ Other unit : μ S. cm⁻¹ \gg L / S is called *cell constant* (cm⁻¹) : it must be adjusted as indicated in the notice (generally about 1 cm⁻¹).

Tonductivity depends on temperature : some conductimeters give directly conductivity values *recalculated for a temperature equal to 20°C (reference)*; these conductimeters have temperature sensor ; other indicate conductivity measured without compensation (test water temperature) Tomber Demineralized water conductivity is about 1 μ S / cm

Standard solutions (20°C) : KCl 0.01 mol / L : 1,277 μS / cm KCl 0.1 mol / L : 11,680μS / cm The recent conductimeters don't need to adjust the zero during calibration.
drinking water conductivity in between about 300 and 600μS / cm; its chloride concentration should be inferior to 250 mg / L and its conductivity inferior to 2,500μS / cm.
MM Na = 23 g / mol MM Cl = 35.5 g / mol

2.2. Procedure Read the notice conductimeter : - is there a temperature compensation ? - calibrate the conductimeter. Immerse the electrode ; don't stir (conductivity depends on agitation) Select units and range Read the conductivity value.

Field of application : drinking waters, industrial waters

3. Practical works

<u>3.1.</u> With powdered NaCl and volumetric flasks, prepare with precision, solutions containing chloride concentrations between about 5 and 150 mg / L : at least five points *Example of solution preparation :* 5 to 150 mg Cl / L = 7.53 to 226.05 mg NaCl / L preparation of solutions : between 10 and 200 mg NaCl / L One litre of Stock Solution SS : 2 g NaCl / L

Flask A	Flask B	Flash C	Flask D	Flask F
$\Gamma usk A$ 0.01 a NaCl / L	$\int \frac{1}{\alpha} $	$\int da NaCl / I$	$\int \frac{15}{2} a NaCl / I$	$\int \frac{1}{2} \frac{1}{\alpha} \frac{N\alpha C}{L}$
0.01 g NaCl / L	0.01 g NaCl / L	0.1 g NaCl / L	0.15 g NaCl / L	0.2 g NaCi/ L
				55710
10 mL E in	50 mL E in	100 mL E in 200	150 mL E in 200	100 mL SS in
200mL	200mL	mL	mL	1000 mL

3.2. Measure each solution chloride concentration

3.3.Measure each solution conductivity

4. Report

 $\label{eq:alpha} \begin{array}{l} \underline{4.1.Draw\ a\ board\ } presenting,\ for\ each\ prepared\ solution: \\ a)\ weighed\ powdered\ NaCl\ masses \\ b)\ prepared\ solutions\ volumes \\ c)\ poured\ AgNO_3\ volumes \\ d)\ chloride\ concentration:\ mg\ Cl^- /\ L \\ e)\ conductivity:\ \mu S\ /\ cm \end{array}$

4.2. Interpret part d) with waited values.

4.3. Plot conductivity = f (chloride concentration)

Verification of your work precision : calculate the correlation coefficient : it must be inferior to 99 %

Material and reagents requirements (for 12 students)

6 flasks containing 400 mL AgNO₃ 4.791 g/L Flask for Ag containing liquid waste 6 flasks with 50 mL of $K_2 Cr_2 O_4$ 50g/L Powdered NaCl + weighing machine (precise) Demineralized water 6 conductimeters with their reference solution + notice 6 volumetric flasks of 1L 30 flasks : 100 or 200 mL