C13-Molecular absorption spectrophotometry

This technique is applied to assess matter concentration in <u>solutions</u> (not suspensions) : these dissolved matters make the solutions coloured ; colour intensity is proportional to matter concentration ; spectrophotometer measures the colour intensity.

colour	wavelength (nm)	complementary colour
red	700-650	green
orange	650-595	Blue : 490 - 465
yellow : $K_2Cr_2O_4$	595-560	Violet : 435-400
green	560-490	Red
Blue : CuSO ₄	490-465	Orange : 650-595
indigo	465-435	Yellow - orange
Violet : KMnO ₄	435-400	Yellow : 595 - 560

Each colour can be characterised by its wavelength and its complementary colour :

Colorimetry measurement principle : the coloured solution receives a monochromatic beam which λ is complementary to solution colour wavelength.

This complementary colour wavelength can be determined with a spectrophotometer, through the use of an absorption spectrum, you can determinate the absorption maximum and then the complementary colour wavelength.

 $\ensuremath{ \ensuremath{ \en$

- wavelength determination

- field of law linearity

 \ll this law can't be applied for concentrated solutions (generally, C < 10⁻³ mol / L)

if the original solution is colourless, add a chromogen : substance which reacts **specifically** with the measured matter (orthophenantrolin with iron, phosphomolybdat with phosphorus, DPD with chlorine...)

 \Rightarrow a calibration range allows to know εl ; then, it is possible to know an unknown matter concentration; let's call it X, **if its concentration is included in this range**:

☞ portable spectrophotometers (Hach DR2000...): slopes 1 and wavelength (absorption spectrum) are already programmed

- range preparation is useless
- In only 2 flasks : blanck and test

read the notice : reaction times and above all the range : **the test concentration must be included in the indicated range ; pay attention to the units and the security**

Field of application :

- normalised dosages of iron, Mn, Cl₂, NO₃, NO₂, NH₄⁺...
- rapid dosages with portable spectrophotometers : read the notices.