1. Principle

An excess of iodine ion is added to the sample volume containing chlorine Dichlorine Cl_2 oxidise iodine $I^-: Cl_2 + 2 I^- \longrightarrow I_2 + 2 Cl^-$ Solution turns brown

I₂ is dosed by titrimetry with sodium thiosulphate : $I_2 + 2 S_2 O_3^2 - 2 I^2 + S_4 O_6^2$

Solution turns colourless

Equivalence :

 $2 \text{ n Cl}_2 = \text{n S}_2 \text{O}_3^{2-1}$

V is the sample volume (L) V_T is the volume of sodium thiosulphate poured (mL) C is the unknown chlorine molar concentration (mol Cl_2/L) m is the mass of chlorine is the sample volume (mg Cl_2) M is the chlorine molecular weight : 71 g/mol C_T is the sodium thiosulphate concentration (mol / L) = 1 / 35.5 mol / L

Then : 2 * m * 10 $^{-3}$ / M = V_T * 10 $^{-3}$ * C_T 2*m / M = V_T * C_T

 $m = V_T * (1/35.5) * 71 / 2$

 $\overline{m}_{mg Cl2} = V_{T ml thiosulphate}$

At the equivalence, the weight of chlorine (mg Cl₂) in the sample volume is equals to the thiosulphate volume versed

This method is adapted for high chlorine concentration (> 100 mg Cl_2 / L) such as hypochlorite solution (Bleach...)

2. Procedure

Chose a sample volume which contains between 5 and 20 mg Cl_2 ; this volume generally is 10 mL.

All dilution must be carried out with drinking water, not with deionized water.

Add 20 mL of KI 10% (100g/L) and 10 mL of acetic acid : solution turns brown

Pour, with the burette, sodium thiosulphate 1/35.5 mol / L until solution turns colourless (just before solution turns colourless, add starch : solution turns black and the visual transition is easier)

3. Practical work

Determinate the chlorine concentration in the Javel water (Bleach) . Data : 1° Cl (chlorometric degree) = 3.16 g Cl₂ / L

4. Report

Determination of chlorine concentration in bleach : $[Cl_2] = Explain$ how you have chosen the sample volume, and / or the dilution of the bleach that you have carried out. Indicate V and V_T. Calculate the chlorine concentration in bleach, in g Cl₂/L and in chlorometric degree.

5. Required material and reagents

For one experiment : 250 mL of Bleach (Javel water, 12 or 48 °Cl) 100 mL of iodine potassium 10% (100 g KI / L) 50 mL of pure acetic acid 10 mL of starch

2. Dosage of chlorine in water : Titrimetric method with DPD

1. Principle

DPD : N,N-**D**iethyl**p**hénylene-1,4 diamine is oxidised by chlorine (or free chlorine : Cl_2) : DPD réd + 1/2 Cl_2 The sample volume turns red

then DPDox is dosed by Mohr's salt Fe^{2+} :

DPDox + Fe^{2+} DPD réd + Fe^{3+}

At the equivalence, the solution turns colourless and : $2nCl_2 = n_{mohr} \label{eq:nchi}$

$$\label{eq:ncl2} \begin{split} & nCl_2 = n_{mohr} \slash 2 \\ & \text{If } V_1 \mbox{ is the volume of Mohr's salt poured, in mL, at the equivalence} \\ & C_1 \mbox{ the concentration of Mohr' salt} = 2.8 \mbox{ mmol} \slash L \\ & C_{chlorine} \mbox{ the unknown chlorine concentration in the sample volume} \ V = 100 \mbox{ mL} \end{split}$$

Then $C_{chlorine} V = C_1 V_1 / 2$

and $C_{chlorine} (mol / L) = C_1 V_1 / 2V$

 $C_{chlore} (mg/L) = 2.8 * V_1 * (35,5 * 2) / 2 * 100$

and $\underline{C_{chlorine}}$ (mg/L) = V₁ (mL)

In these conditions, the volume of Mohr's salt poured at the equivalence, in mL, is equal to the chlorine concentration in the sample volume, in mg Cl_2 / L .

This method is adapted for low chlorine concentration (< 25 mg Cl_2 / L, i.e. V_1 < 25 mL) such as drinking water (0.1 to 0.5 mg/L...).

 \Leftrightarrow chlorine can be combined, for example with ammonia and other nitrogenous compounds, to give chloramines (NHCl₂, NH₂Cl, NCl₃); in order to <u>dose total chlorine</u> (free chlorine and chloramines), add KI to the sample :

- chloramines oxidise I⁻ to give I_2 ;

- I_2 can react with DPD to give a red compound (same reaction between Cl_2 and DPD). Then Fe²⁺react with DPD issued from initial Cl_2 and from I_2 .

If in order to dose chlorine, there is another method : spectrophotometric method

2. Procedure

In a 250 mL erlenmeyer flask, introduce 100 mL of sample. Add 5 mL of pH 6.5 buffer and 5 mL of DPD : the solution turns red. Pour Mohr's salt (burette) until solution turns colourless : V_1 mL. *Total chlorine : add 100 mL of sample, 5 mL of buffer, 5 mL of DPD <u>and 1 g of KI</u> and wait for 2 minutes. Verse Mohr's salt : V_1 correspond to the total chlorine concentration.*

3. Practical work

Carry out the determination of the chlorine concentration of the sample noted "Cl2"

4. Report

5. Required material and reagents For one experiment :

50 mL of pH 6.5 buffer	
(KH_2PO_4)	46g
Na_2HPO_4	24g
$EDTA, 2Na \ (C_{10}H_{14}N_2O_8Na_2 . 2H_2O) \ 8 \ g/L$	100ml
mercuric chloride HgCl ₂	0.02g
deionized water until	1000mL)

5 g of KI

50 mL of DPD

(* In 250 mL of deionized water, mix 2 mL of sulphuric acid (18 mol / L and 1.84 g/mL) and 25 mL of EDTA,2Na 8g/L* dissolve in this mixture, 1.1 g of anhydrous diethyl – p – phenylenediamine DPD sulphate

 $[NH_2-C_6H_4-N(C_2H_5)_2 - H_2SO_4]$

* complete with deionized water until 1000mL

The maximum storage time : one month

50 mL of Mohr's salt [(NH₄)₂Fe (SO₄)₂ , 6 H₂O] 2.8 * 10⁻³ mol / L

 $\begin{array}{ll} ([(NH_4)_2Fe~(SO_4)_2~,~6~H_2O~] & 1.106~g\\ sulphuric~acid~diluted~1/3~(V/V) & 1mL\\ deionized~water~until~1000mL) \end{array}$

250 mL of diluted bleach ($0.1 < [Cl_2] < 25$ mg $Cl_2\,/\,L)$

For example, if initial chlorine concentration in bleach is 48°Cl (152 g / L) : dilute it 10,000 times (until 15.2 mg / L : 100μ L of bleach in one litre of drinking water , not in deionized water).

one microburette (0.1 to 1 mL or to 5 mL)

3. Determination of the break point

1. Principle

The break point is the amount of chlorine necessary to remove ammonia in water.

Chlorine first react with ammonia to give chloramines (A) : $HClO + NH_3 \longrightarrow NH_2Cl + H_2O$ Beyond this formation, the chlorine added reacts with chloramines and destroy them (B) ; the amount of chlorine necessary to form and next to remove chloramines is the break point \bigcirc ; beyond this point, the amount of added chlorine remains in water as free chlorine (C).

Global reaction : 2 NH₃ + 3 Cl₂ 7.6 mg of dichlore are necessary to remove 1 mg N. NH₃.

2. Procedure

You have twelve 500 mL erlenmeyer flasks containing 500 mL of solution 1 mg $N.NH_4^+$ / L (3.82 g NH_4Cl / L).

flask n°	1	2	3	4	5	6	7	8	9	10	11	12
Bleach	1.5	2	2.5	3	3.5	3.75	4	4.25	4.5	5	5.5	6
1g/L												
(mL)												
final	3	4	5	6	7	7.5	8	8.5	9	10	11	12
$[Cl_2]$												
mg/L												

Add these amounts of bleach :

Keep the flask in the darkness during 2 hours.

Add 10 mL of acetic acid and 20 mL of KI 10% : solution must turns brown Titrate total chlorine with sodium thiosulphate 1/35.5 mol / L until solution turns colourless : note $V_{\rm T}$.

$\label{eq:constraint} \begin{array}{l} \underline{3. \ Report} \\ Plot \ the \ curve \ representing \ V_T \ = f \ ([Cl]_2 \) \\ Determinate \ the \ break \ point. \end{array}$

4. Material and reagent requirements

12 erlenmeyer flasks : 500 mL , containing 500 mL of 3.82 g NH_4Cl / L 200 mL of acetic acid 300 mL of KI 10% Starch 1L of sodium thiosulphate 1/35.5 mol $\,/$ L