Professor Navarro

<u>M-tech course :</u> <u>Biological water treatment of raw water meant for drinking water production</u>

1. Quality of groundwater and surface water

Figure 1 illustrates the water cycle in town ; in this course, we will study biological treatment applied to drinking water production, not to waste water or sludge purification.

Raw water may be very polluted as shown in figure 2.

Biological treatment in drinking water production is rare (**figure 3**) but it issystematic in waste water purification.

2. Quality of drinking water

WHO (1998) has created five drinking water parameters categories (Guidelines for drinking water quality) : **figure 4**.

- 1. Bacteriological quality
- 2. Chemicals of health significance in drinking water
- 3. Chemicals not of health significance at concentrations normally found in drinking-water
- 4. Radioactive constituents of drinking-water
- 5. Substances and parameters in drinking water that may give rise to complaints from consumers

Among these chemicals and parameters, some can be removed by means of a biological treatment ; they can be either :

- dissolved substances (if they are suspended solutes, they can be separated from water by means of a simple clarification), or

- biodegradable chemicals :

- source of carbon, nitrogen, phosphorus... : if the exploited microbes are heterotrophic, these matter are organic (glucose, urea, amino acids, phosphoproteins...), otherwise they are autotrophic (CO₂, N₂, NH₃, PO₄³⁻, S...).

- source of electron (i.e. source of energy - ATP) : these microbes get their energy from <u>reduced matters</u> oxidations : they are chemotrophic (on the contrary, some organisms get their energy from light and are phototrophic) ; if the source of electron is organic (glucose, CH₄...), they are called chemo-organotrophic, otherwise they are chemo-lithotrophic (NH₃, NO₂⁻, S, S²⁻...) ; these oxidations are coupled with reductions ; the whole reaction called oxidation-reduction generates ATP ; electrons must be accepted by a chemical called final electron acceptor ;

The undesirable chemical can be the final acceptor of electron in energetic metabolism : this oxidized chemical is reduced by the electrons issued from the oxidation of the source of electrons ; the whole biochemical process, called respiration (localized in a membrane and performed in a electron transport chain), can be either aerobic (O_2 is the final acceptor) or anaerobic (NO_3^- , CO_2 , $SO_4^{2^-}$, $SO_3^{2^-}$...). Most organisms which are heterotrophic are in the same time chemo-organotrophic : the source of carbon is also the source of electrons : they are called chemo-organo heterotrophic : all animals, bacteria like *Escherichia coli*, *Pseudomonas aeruginosa*...

Most organisms which are autotrophic are also chemio-lithotrophic : they are called chemo-litho autotrophic : only bacteria like *Nitrosomonas, Nitrobacter, Gallionella ferruginea, Leptothrix...* In order to master the biological water treatment process, one should know the requirements of the exploited bacteria :

- is the undesirable substance the source or the acceptor of electrons, the source of carbon, of nitrogen...?

- is it an aerobic or an anaerobic metabolism?

- is this metabolism sensible to temperature, pH, or to the presence of chemicals like metals, acids, organic matters...?

<u>3. Origins and risks associated to undesirable substances meant to be remove by biological process :</u> **figure 5**

4. The biological processes in water treatment : biofilm and microbial flocculation

Once the metabolism is performed, the exploited microbes must be separated from treated water ; there are two techniques : attached or suspended growth ; in drinking water production, as raw water is quiet clear, attached growth is the main technology : **figures 6 to 8** All the exploited biochemical processes are existing reactions belonging to different matter cycles (C, N...).

4.1. Nitrogen substances

Two main chemicals are concerned : ammonia and nitrates ; their removal is an exploitation of some reactions existing in nitrogen cycle.

4.1.1. Nitrogen cycle : figure 9

Ammonia is removed by means of nitrification and nitrification thanks to denitrification. Ammonia can be removed by means of chlorination, and nitrates by ion exchange.

4.1.2. Ammonia removal

4.1.2.1. Involved micro-organisms

Nitrosomonas and *Nitrobacter* are bacteria but possess intracellular membranes in which nitrification occurs : figure 10

4.1.2.2. Biochemistry of the process

They are chemo-litho autotrophic ; their source of electrons are respectively NH_3 and NO_2^- , oxygen is the final electron acceptor.

Nitritation performed by *Nitrosomonas* : $2 \text{ NH}_3 + 3 \text{ O}_2 \longrightarrow 2 \text{ NO}_2^- + 2 \text{ H}_3\text{O}^+$ Nitratation performed by *Nitrobacter* : $2\text{NO}_2^- + \text{O}_2 \longrightarrow 2\text{NO}_3^-$ Whole reaction of nitrification : $\text{NH}_3 + 2\text{O}_2 \longrightarrow \text{NO}_3^- + \text{H}_3\text{O}^+$ A coherent caption is respected for figures describing processes : **figure 11**

4.1.2.3. Operating

Raw water containing ammonia is treated by as aerated biofilter colonized by an attached growth ; the biofilm contain the two types of bacteria ; treated water contains nitrates. Once biofilter is clogged, it must be backwashed : **figure 12**

4.1.3. Nitrates removal

4.1.3.1. Involved micro-organisms

A lot of bacteria are able to remove nitrates : Pseudomonas aeruginosa, Escherichia coli...

4.1.3.2. Biochemistry of the process

The reaction is called denitrification ; it transforms nitrates in N_2 , and nitrates are the final electron acceptors. It is an anaerobic respiration ; the reaction is catalyzed by nitrate reductase. Nitrate is first reduced in nitrite and then the reduction continues until the state N_2 .

The type of electron donor determinates the requirement of the bacteria :

- it can be an organic substance (ethanol, glucose, acetic acid...) : the bacteria are chemo-organo heterotrophic ; this matter must be present in raw water, together with nitrates. This type of heterotrophic denitrification is performed in all the waste water treatments (where organic matter , BOD, is present naturally) and the most current drinking water treatments (where organic matter is added)

- or a mineral chemical (S, S^{2-} , $Fe^{2+}...$) : bacteria are chemo-litho autotrophic ; in general, there is enough CO_2 in water to provide carbon ; this kind of denitrification is less efficient.

Oxygen inhibits denitrification (the oxidation of the donor is more exergonic and bacteria prefer aerobic respiration).

4.1.3.3. Operating

The biofilter is closed (anaerobic respiration) and :

- if it concerns heterotrophic denitrification, an organic matter is added in water (more often ethanol) : figure 13

- if it concerns autotrophic denitrification, the electron donor is already present in raw water.

Some very rare processes purify ground water (figure 14), or need the addition of the donor of electrons (H_2 for example); figure 15

Finally, some processes allow to remove both nitrates and ammonia in water : anaerobic denitrification must be the first step : **figure 16**

4.2. Iron and manganese

4.2.1. Involved micro-organisms

In the stalk of *Gallionella ferruginea*, ferric ions are precipitated. The stalk allows the bacterium to fix on surfaces : **figure 17**

Leptothrix concentrates oxides of manganese in its sheath. It can adopt two forms : filamentous or single, flagellated and mobile : **figure 18**

4.2.2. Biochemistry of the process

Ferrous iron Fe^{2+} and manganese ion Mn^{2+} are the electron donors : these bacteria are chemo-litho autotrophic, aerobic :

 $Fe^{2+} + e^{-}$ $and Fe^{3+} + 3 OH^{-}$ $Mn^{4+} + 2e^{-}$ Mn^{2+} $Fe(OH)_{3p}$ $Fe(OH)_{3p}$ MnO_{2p}

The two oxidations don't occur in the same area of pH- oxidation – reduction potential : figure 19.

4.2.3. Operating of biological removal of iron

The biological oxidation is quite difficult to master because chemical oxidation occurs too; this oxidation gives rise to precipitates less compact than those issued from biological oxidation.

4.2.4. Operating of biological removal of iron and manganese

Iron removal must be performed before manganese removal because it needs less oxygen : figure 21

4.3. Dissolved organic carbon

4.3.1. Involved micro-organisms

All the aerobic heterotrophic organisms can participate to DOC oxidation.

4.3.2. Biochemistry of the process

DOC is source of carbon and electron ; the reaction is the oxidation of organic matter in \mbox{CO}_2 and water.

Different pathways can be used :

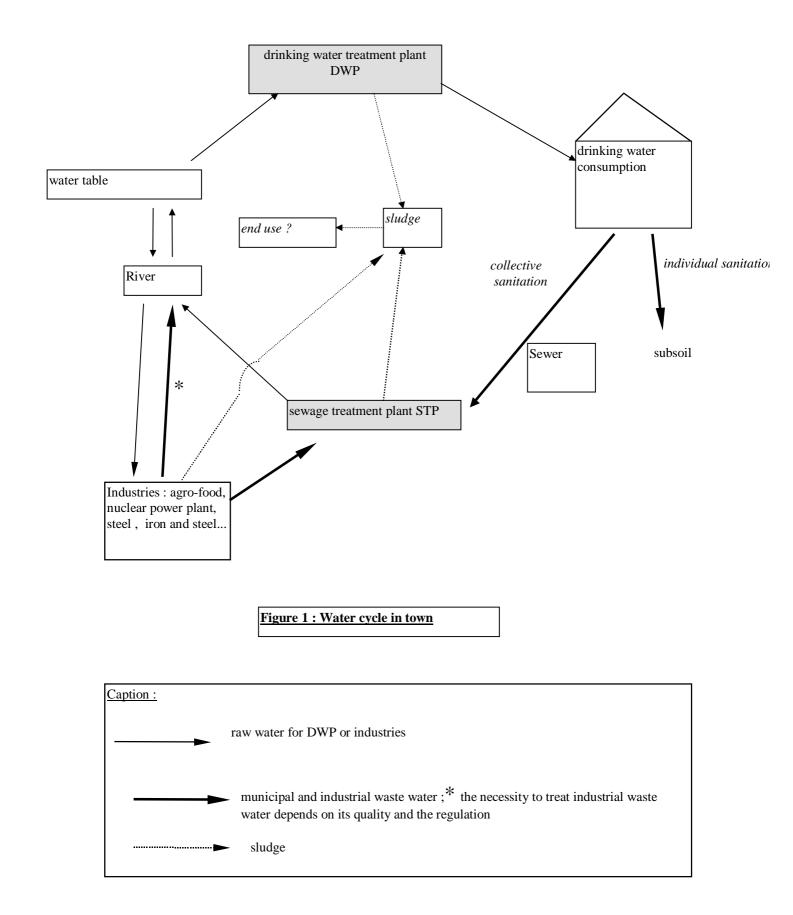
- to oxidize **organic matter** in glyceraldehyde 3-P : glycolysis, pentose phosphate pathway or Entner Doudoroff pathway

- then oxidation continues in the tricarboylic acid cycle : it gives rise to CO_2 , partially oxidized chemicals (organic acids...) and reduced compounds whose oxidation with O_2 occurs in a membrane and generates H_2O and energy (ATP). It is an aerobic respiration.

Oxygenic photosynthesis generates O₂.

All these metabolisms exist in the carbon cycle : **figure 22**

The microorganisms carrying out these metabolisms, participate to a food chain : figures 23 and 24


4.3.3. Operating

There are two kinds of biofiltration :

- slow filtration (5 m^3 / d) : **figure 25**

- or , if DOC is refractory to biodegradation, an intermediary oxidation precedes the biofiltration and allows to transform RDOC in BDOC : figure 26

<u>Conclusion</u> : figure 27 summarises the different biological processes applied to drinking water production.

Bacteriological analysis	Unit	Value	Regulation
Total coliforms	/ 100mL	> 200	-
Thermoduric coliforms	/100mL	> 200	20,000
Streptococci	/100mL	> 200	10,000
(Enterococcus faecalis)			
E.coli		4	-
Physico-chemical	Unit	Value	Regulation
analysis			0
Temperature	°C	13	25
Aspect	cloudy and yellow	ish	
pH at 20°C		6.75	-
conductivity	µS.cm ⁻¹ at 20°C	540	-
Turbidity	NTU	390	200
Nitrates	mg NO_3^- / L	67.1	50
Nitrites	$mg NO_2^-/L$	0.09	-
Ammonium	mg NH ₄ ⁺ / L	< 0.05	4
Permanganate value	mg O ₂ / L	2.2	10
Hardness	mg CaCO ₃ / L	323	-

<u>Conclusion</u>: Very hard water containing nitrites and which nitrate concentration is superior to 50 mg / L. Very bad raw water bacteriological quality.

Notes :

* Regulation : European Economic Community (75/440/EEC) concerning raw water quality meant to drinking water production

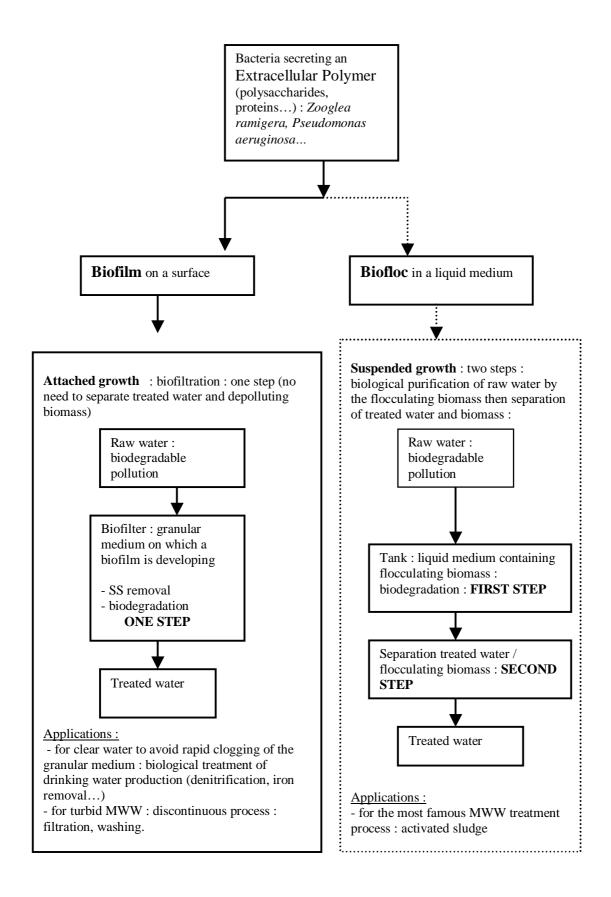
* (-) means that the regulation doesn't indicate any information concerning this parameter though it was analysed.

Figure 2 : Example of raw water quality meant to drinking water production

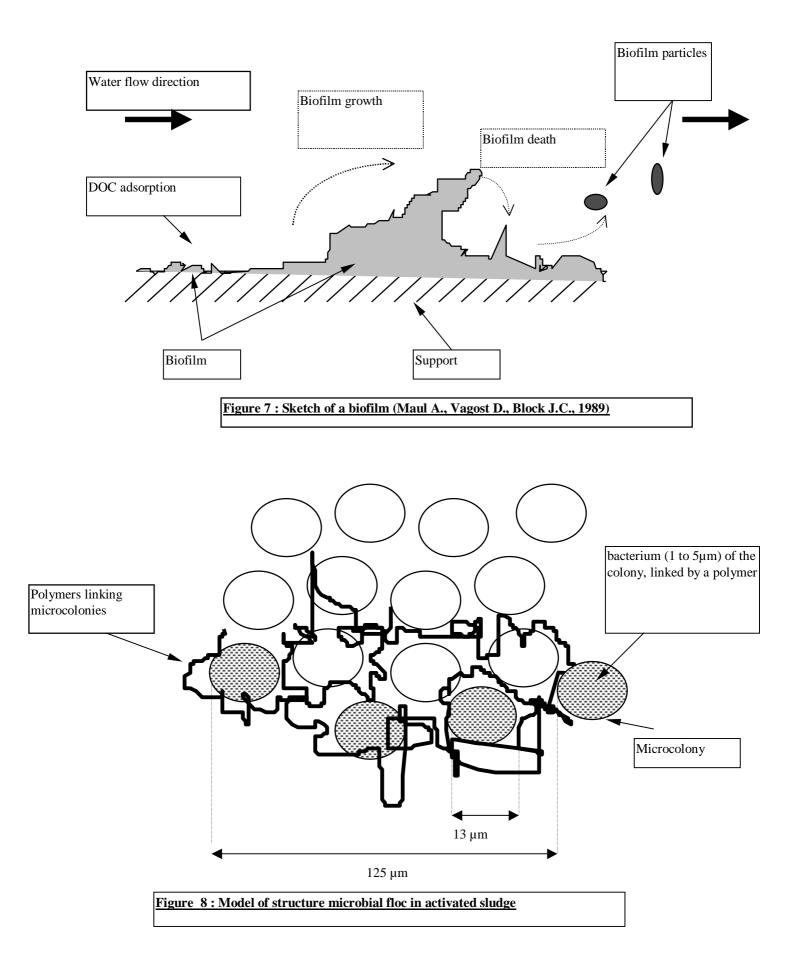
Figure 3 : Example of a drinking water production process

Parameters	units	WHO
	units	recommendation
1. Bacterio	logical quality	100000000000000000000000000000000000000
Total coliform bacteria	/ 100 mL	0
E.coli or Fecal or thermotolerant	/ 100 mL	0
coliforms		
Enterococcus faecalis	/ 100 mL	0
(fecal streptococci)		
Sulphite reducing Clostridium	/ 20 mL	0
2. Chemicals of health si		
2.1. Inorga	nic constituents	
antimony	mg / L	0.005
arsenic	mg / L	0.01
barium	mg / L	0.7
Beryllium	mg / L	NAD : No Adequate
		Date to permit
		recommendation of a
		health-based guideline
		value
Boron	mg / L	0.5
Cadmium	mg / L	0.003
Chromium	mg / L	0.05
Copper	mg / L	2
Cyanide	mg / L	0.07
Fluoride	mg / L	1.5
Lead	mg / L	0.01
Manganese	mg / L	0.5
Mercury (total)	mg / L	0.001
Molybdenum	mg / L	0.07
Nickel	mg / L	0.02
Nitrate	mg / L	50
Nitrite	mg / L	3
Selenium	mg / L	0.01
Uranium	mg / L	0.002
2.2. Organi	c constitu	ients
2.2.1. Chlorinated alkanes		
Carbon tetrachloride	μg / L	2
Dichloromethane	µg/L	20
1,1-dichloroethane	µg/L	NAD
1,2-dichloroethane	µg/L	30
1,1,1-trichloroethane	µg/L	2,000
2.2.2. Chlorinated ethenes		
Vinyl chloride	μg / L	5
1,1-dichloroethene	μg / L	30
1,2-dichloroethene	μg / L	50
Trichloroethene	μg / L	70
Tetrachloroethene	μg / L	40
2.2.3. Aromatic hydrocarbons		
Benzene	μg / L	10
Toluene	μg / L	700
Xylenes	μg / L	500
Ethylbenzene	μg / L	300
Styrene Benzo[a]pyrene	μg / L	20 0.7

Parameters	units	WHO			
		recommendation			
2.2.4. Chlorinated benzenes					
Monochlorobenzene	μg / L	300			
1,2-dichlorobenzene	μg / L	1,000			
1,3-dichlorobenzene	μg / L	NAD			
1,4 dichlorobenzene	μg / L	300			
Trichlorobenzene (total)	μg / L	20			
2.2.5. Miscellaneous					
Di((2-ethylhexyl)phtalate	μg / L	8			
Adipate	μg / L	80			
Acrylamide	μg / L	0.5			
Epychlorohydrin	μg / L	0.4			
Hexachlorobutadiene	μg / L	0.6			
EDTA	μg / L	600			
Nitrilotriacetic acid	μg / L	200			
Dialkyltins	μg / L	NAD			
Tributyltin oxide	μg / L	2			
Microcystin-LR	µg / L	1			
23 P	esticides				
Alachlor	μg / L	20			
Aldicarb	μg / L	10			
Aldrin/dieldrin	$\mu g / L$ $\mu g / L$	0.03			
Atrazin	$\mu g / L$ $\mu g / L$	2			
Bentazone	$\mu g / L$ $\mu g / L$	300			
Carbofuran	$\mu g / L$ $\mu g / L$	7			
Chlordane	$\mu g / L$ $\mu g / L$	0.2			
Chlorotoluron		30			
	µg / L	0.6			
Cyanazine DDT	µg / L	2			
1,2-dibromo-3-chloropropane	µg / L	1			
1,2-dibromoethane	µg / L	0.4 - 15			
2,4-dichlorophenoxyacetic acid	µg / L	<u>0.4 – 15</u> 30			
(2,4-D)	μg / L	50			
1,2-dichloropropane (1,2-DCP)	μg / L	40			
1,3-dichloropropane	μg / L	NAD			
1,3-dichloropropene	μg / L	20			
Diquat	μg / L	10			
Heptachlor and heptachlor epoxide	μg / L	0.03			
Hexachlorobenzene	μg / L	1			
Isoproturon	μg / L	9			
Lindane	μg / L	2			
MCPA	μg / L	2			
Methoxychlor	$\mu g / L$	20			
Metolachlor	$\mu g / L$ $\mu g / L$	10			
Molinate	$\mu g / L$ $\mu g / L$	6			
Pendimethalin	$\mu g / L$ $\mu g / L$	20			
Pentachlorophenol	$\mu g / L$ $\mu g / L$	9			
Permethrin	μg / L μg / L	20			
Propanil	μg / L μg / L	20 20			
Pyridate	μg / L μg / L	100			
Simazine		2			
	µg / L	7			
Terbutylazine (TBA) Trifuralin	µg / L				
	$\mu g / L$	20 MCPA			
Chlorophenoxy herbicides other than 2,4-D and MCPA					
2,4-DB	µg / L	90			
Dichlorprop	μg / L	100			


Parameters	units	WHO		
		recommendation		
Fenoprop	μg / L	9		
МСРВ	μg / L	NAD		
Mecoprop	μg / L	10		
2,4,5-T	µg / L	9		
2.4. Disinfectants and	disinfectants by	y-products		
2.4.1. Disinfectants				
Monochloramine	mg / L	3		
Di- and trichloramine	mg / L	NAD		
Chlorine	mg / L	5		
Chlorine dioxide	mg / L			
Iodine	mg / L	NAD		
2.4.2. Disinfectants by-products				
Bromate	μg / L	25		
Chlorate	μg / L	NAD		
Chlorite	μg / L	200		
2.4.3. Chlorophenols				
2-chlorophenol	μg / L	NAD		
2,4-dichlorophenol	µg/L	NAD		
2,4,6-trichlorophenol	μg / L	200		
Formaldehyde	μg / L	900		
MX	μg / L	NAD		
Trihalomethanes	μg / L	1		
Bromoform	μg / L	100		
Dibromochloromethane	μg / L	100		
Bromodichloromethane	µg / L	60		
Chloroform	μg / L	200		
2.4.4. Chlorinated acetic acids	110			
Monochloroacetic acid	μg / L	NAD		
Dichloroacetic acid	μg / L	50		
Trichloroacetic acid	µg/L	100		
Chloral hydrate	μg / L	10		
(trichloroacetaldehyde)	1.6	-		
Chloroacetone	μg / L	NAD		
Halogenated acetonitril	µg/L	NAD		
Dichloroacetonitrile	µg/L	90		
Dibromoacetonitrile	µg/L	100		
Bromochloroacetonitrile	μg / L	NAD		
Trichloroacetonitrile	μg / L	1		
Cyanogen chloride (as CN)	μg / L	70		
chloropicrin	μg / L	NAD		
3. Chemicals not of health significa				
	king-water	rations normany round		
Asbestos	U			
Fluranthene	U			
Glyphosatsilver	U			
Tin	U			
silver	U			
4. Radioactive consti		ng_water		
alpha activity	Bq/L	0.1		
beta activity	Bq/L Bq/L	1		
5. Substances and parameters in drinking water that may give rise to complaints from consumers				
5.1. Physical parameters				
Colour	mg/L Dt Co	15		
	mg/L Pt-Co	15		
Taste and odour				
Temperature				

Parameters	units	WHO			
		recommendation			
Turbidity	NTU	5			
5.2. Inorganic constituents					
Aluminium	mg / L	0.2			
Ammonia	mg / L	1.5			
Chloride	mg / L	250			
Copper	mg / L	1			
Hardness	ppm CaCO ₃	500			
Hydrogen sulphide	mg / L	0.05			
Iron	mg / L	0.3			
Manganese	mg / L	0.1			
Dissolved oxygen					
pH		6.5-8.5			
Sodium	mg / L	200			
Sulphate	mg / L	250			
Total dissolved solids	mg / L	1,000			
zinc	mg / L	3			
5.3. Organic constitu	ients				
Toluene	μg / L	24-170			
Xylene	μg / L	20-1,800			
Ethylbenzene	μg / L	2-200			
Styrene	μg / L	4-2,600			
Monochlorobenzene	μg / L	10-120			
1,2-dichlorobenzene	μg / L	1-10			
1,4-trichlorobenzene	μg / L	0.3-30			
Synthetic detergents	μg / L	5-50			
5.4. Disinfectants and disinfectar		1			
Chlorine	μg / L	600-1,000			
Chlorophenols		1			
2-chlorophenol	μg / L	0.1-10			
2,4-dichlorophenol	μg / L	0.3-40			
2,4,6-trichlorophenol	μg / L	2-300			


<u>Figure 4</u> : Regulation governing the quality of drinking water : WHO recommendation (Geneva 1986) ; parameters meant to biological removal are written in **large bold type**.

Undesirable compound C	Origin	Toxicity or inconvenient
DOC : humic acids, pesticides, hydrocarbon	natural pollution	precursors of carcinogenic halogen compounds if raw water is chlorinated (preoxidation)
NH ₃ / NH ₄ ⁺	organic pollution	Chlorine consumption and bacterial multiplication in drinking water network
NO ₃	Fertiliser or MWW outlet	methaemoglobinaemia and carcinogenic nitrosamin(d)es
Fe ²⁺	natural	Chlorine consumption, degradation of the network , taste and colour (rust)
Mn ²⁺	natural	Like iron (black colour)

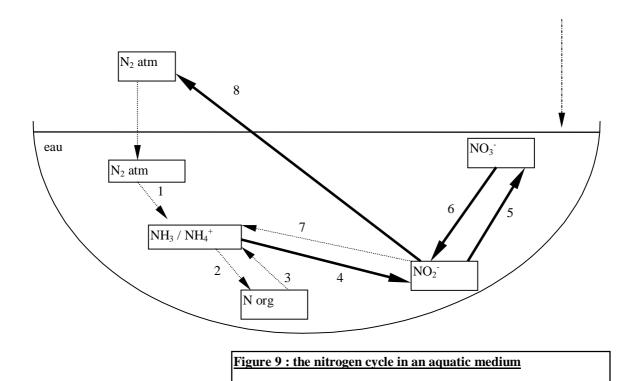

<u>Figure 5 : Origins and risks associated to the presence of undesirable chemicals in raw</u> <u>water meant to biological water treatment process</u>

Figure 6 : Attached and suspended growth in water treatment

Exterior sources : organic nitrogen, ammonia. nitrates

Caption :

a) Biochemical reaction :

1 : Nitrogen fixation : $N_2 + 8H^+ + 8e^- + 16 \text{ ATP} \longrightarrow$ $2 \text{ NH}_3 + \text{H}_2 + 16 (\text{ADP} + \text{P}_i)$; catalysed reaction by a symbiotic bacteria nitrogenase [Rhizobium - leguminous association, actinomycetes - angiosperm plants, cyanobacteria (Anaboena) - aquatic bracken] or a free bacteria [photosynthetic (cyanobacteria, green bacteria) or heterotroph as enterobacteria, Clostridium, Methanococcus].

2 : assimilation of ammonia (glutamate dehydrogenase or glutamate synthese / glutamine synthetase pathways, depending on the available ammonia concentration $[NH_4^+]$)

3 : ammonification

4 : nitritation : $\mathbf{NH_4^+} + \frac{1}{2} O_2 \longrightarrow \mathbf{NO_2^+} + H_2O + 2H^+$; bacteria CLA Ae : *Nitrosomonas* 5 : nitratation : $\mathbf{NO_2^+} + \frac{1}{2} O_2 \longrightarrow \mathbf{NO_3^+}$: bacteria CLA Ae : *Nitrobacter* 4 + 5 : nitrification : here, the nitrogened compound is source of energy (electron donor)

6 + 7: reduction of nitrates in ammonia : NO₃ + 8 e⁺ + 10H⁺ \longrightarrow NH₄ + 3 H₂O

2 pathways :

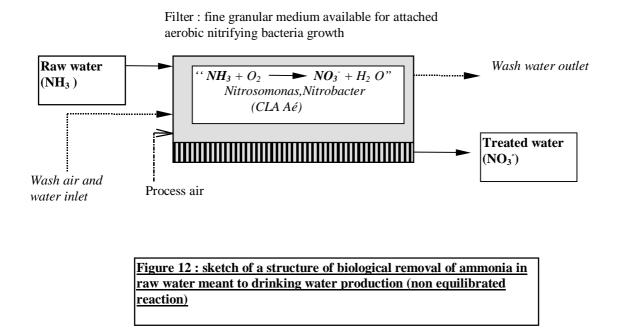
• assimilatory reduction (6 catalysed by Nitrate Reductase B) followed by the incorporation of nitrogen in organic acids by transamination s to give amino acids

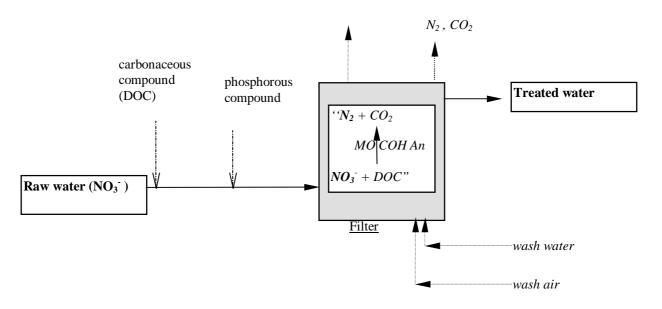
• or dissimilatory reduction (6 catalysed by la Nitrate Reductase A); it is called the DNRA pathway : dissimilatory nitrate reduction to ammonia

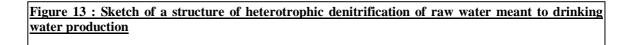
6 + 8: dissimilatory reduction of nitrates (NRA) until N₂: denitrification : here the nitrates are final electron acceptor $2 \text{ NO}_3 + 12 \text{ H}^+ + 10 \text{e}^- \longrightarrow 6 \text{ H}_2\text{O} + \text{N}_2$: bacteria CLA or COH depending on the kind of electron donor The choice between dissimilatory reduction of nitrates until N_2 or NH_4^+ depends on the concentration of ammonia in the medium

b) Water treatment applications:

running reaction in nitrogen removal in wastewater purification and raw water meant to drinking water production (mainly nitrification and denitrification)


minor importance reactions in water treatment


Intracytoplasmic membranes


Figure 10 : Sketch of a nitrifying bacteria (CLA Ae : *Nitrosomonas* or *Nitrobacter...*) ; although they are prokaryotes , their cytoplasm contains membranes in which electron transport occurs

Figu	re 11 : Gener	al caption for	r the descrip	<u>processes</u>	
structure for treatme	nt				
Raw or treated wate	er				
>	: Water flow				
	: sludge, backwas	h water, product	ts of reaction		
→ <u>MO :</u> micro-organi DOC : dissolved or	: reagent additio	n			
<u>MO :</u> micro-organi DOC : dissolved or <u>Nutritional types :</u> C : chemotrophic P : phototrophic	sms	n			
<u>MO :</u> micro-organi DOC : dissolved or <u>Nutritional types :</u> C : chemotrophic	sms	n			

wash water outlet

Reactor		
Straw + sand + CaCO ₃ Cellulose hydrocarbons fungi and heterotrophic denitrification in the reactor		
	Drilling	Ground level
hydrocarbons infiltration		
Heterotrophic denitrification in ground water : "DOC + NO_3 " N_2 + CO_2 " MO COH An		

Figure 14 : Sketch of an *in situ* structure of heterotrophic denitrification of raw water meant to drinking water production

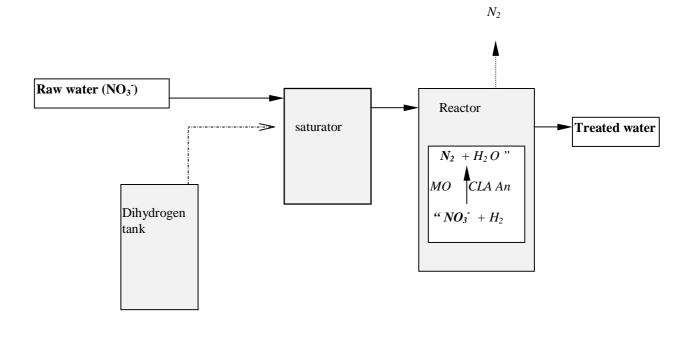


Figure 15 : Sketch of a structure of autotrophic denitrification of raw water meant to drinking water production

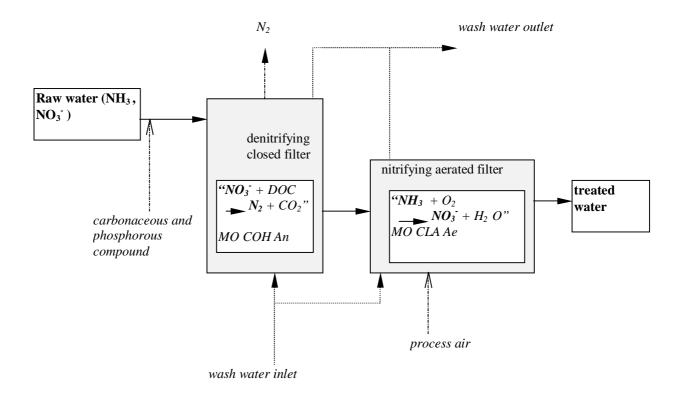


Figure 16 : Sketch of a structure of biological treatment of raw water containing both nitrates and ammonia and meant to drinking water production (non equilibrated reaction)

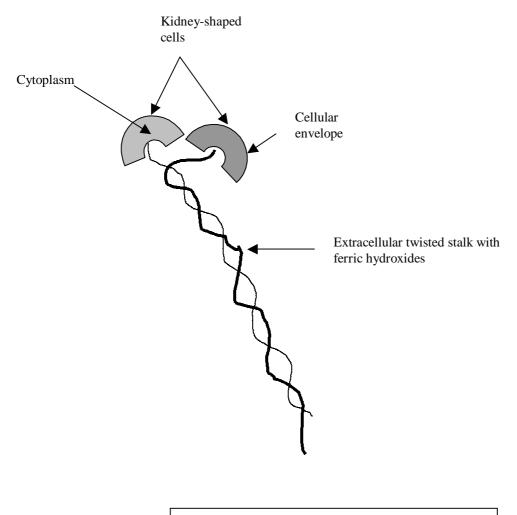
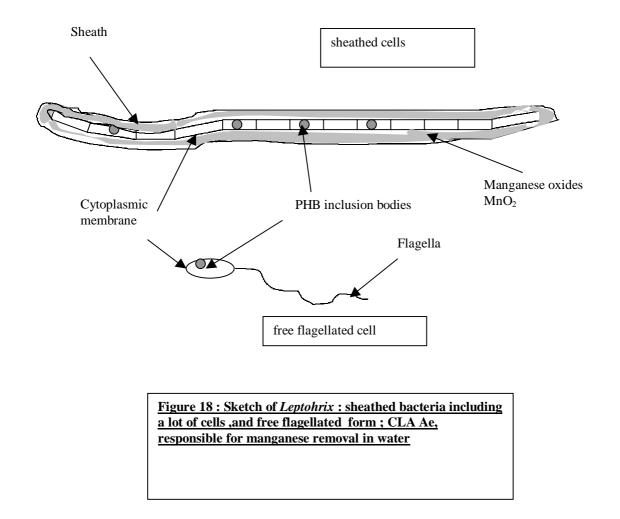
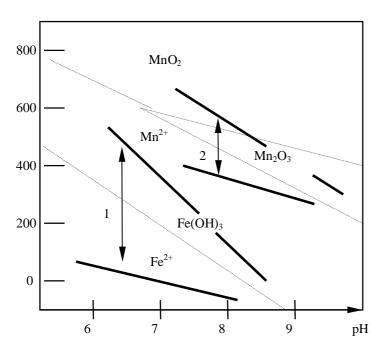
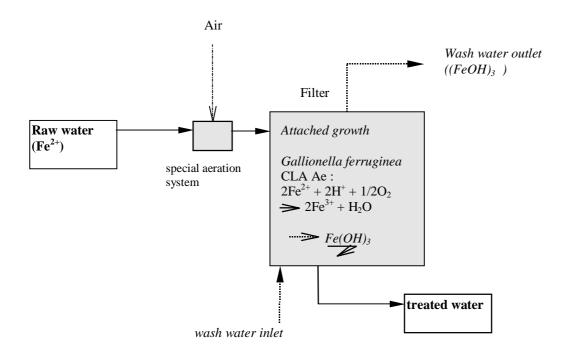
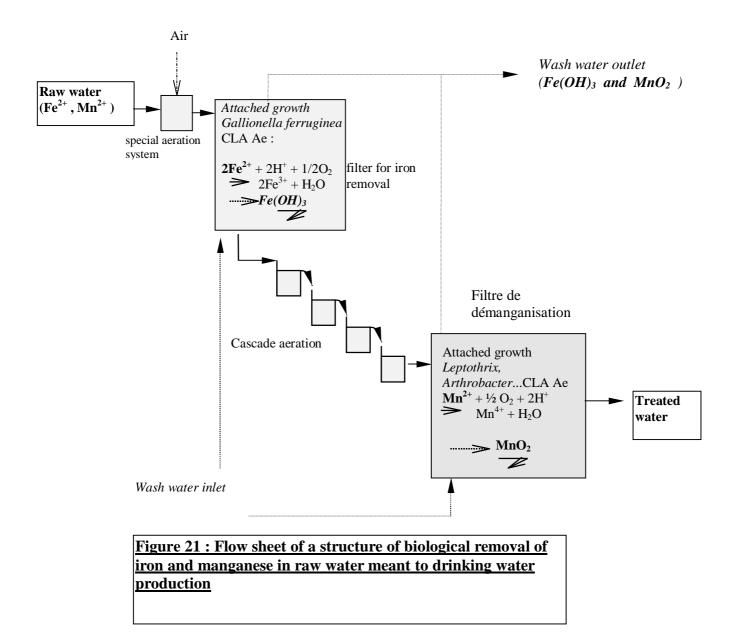
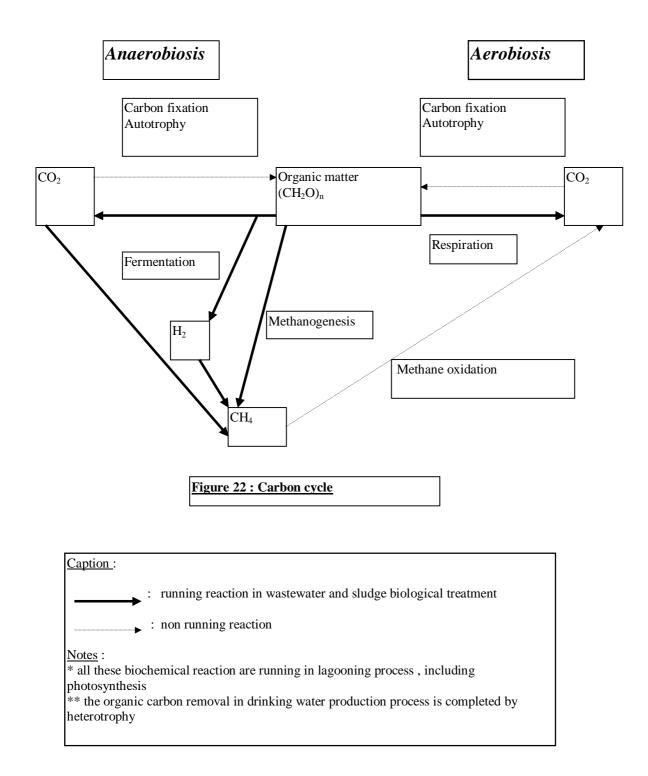




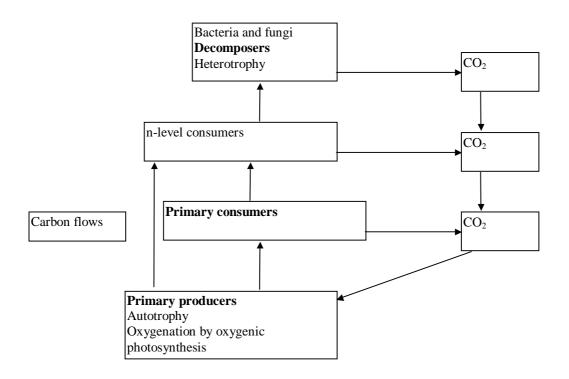
Figure 17 : Sketch of two bacteria Gallionella Ferruginea (CLA Ae) responsible of water iron removal

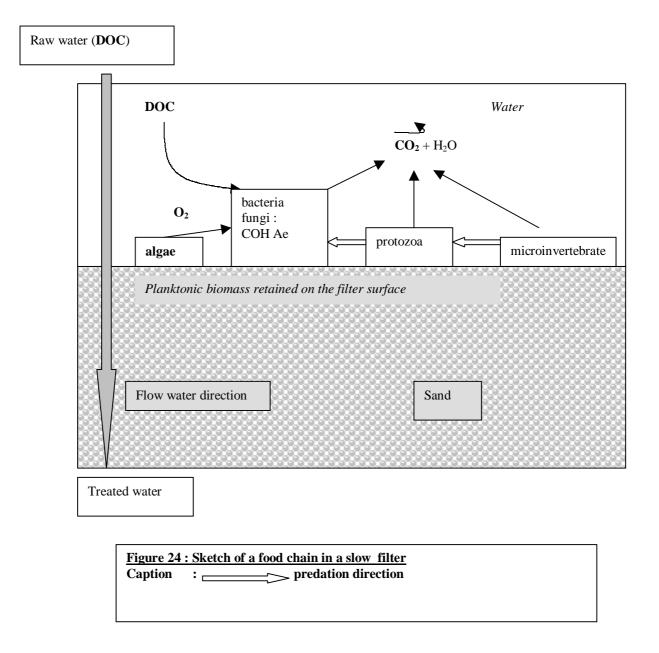


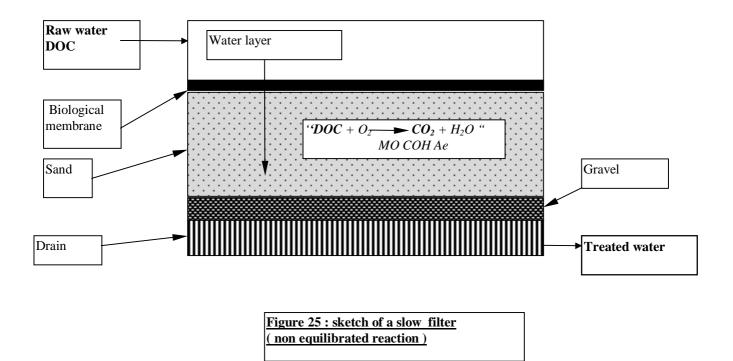
EH (mV)




Figure 19 : Oxidation-reduction potential versus pH diagram of iron and manganese


- Caption : 1 : field for iron bacteria
- 2 : field for manganese bacteria


Figure 20 : Sketch of a structure of biological removal of iron in raw water meant to drinking water production



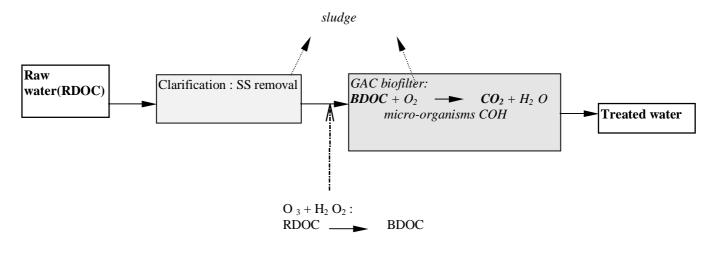


Figure 23 : Sketch of a food chain

<u>Caption</u>: RDOC : refractory (pesticide, humic acids...) BDOC : biodegradable DOC (organic acids...) SS : suspended solids GAC : granular activated carbon

> Figure 26 : Sketch of a structure to remove RDOC by oxidant/biofilter coupling; non equilibrated reaction carried out by COH micro-organisms

Advantage or inconvenient par rapport in relation to physical treatment	*only efficient process *no by-product	no undesirable by-product	Generates less by-products	Very adhering predpitate (biofilm)	Likeiron
Condition for the treatment	oxygenation	oxygenation and not much organic mat tr	anoxia and presenceof organic matter if COH	Gent le oxygenation	oxygenation and no ammonia
Role of C in the metabolism Product of reaction (*)	Sourceof electrons and C & CO ₂	Sourceof electrons & NO3 ⁻	final acceptor of electrons « N ₂	Sourceof electrons ☞Fe ³⁺ , F <u>e(OH)</u> 3	Sourceof electrons &™Mn ⁴⁺ , MnO ₂
Trophic type	COH Ae	CLA Ae	COH An or CLA An	CLA Ae	CLA Ae
Invaved micro- organism	miscellaneous	Ni trosomonas and Ni trobacter	Miscell aneous : enterobacteria, Pseudomonas	* Gallionella, Leptothrix, Sphærotius, Pæudomonæ	Leptothrix
Physical removal	adsorption on GA C	Chlorination	Ion exchange, membrane process	dhemical oxidation (O ₃)	Likeiron
Toxicity ar inconvenient	prearrsors of carcinogenic halogen compounds	Chlorine consumption and bacterial multiplication	methaemoglobi - -naemia and carcinogenic ni trosamin(d)es	Chlorine consumption, degradation of the network , taste and colour (rust)	Likeiron (black colour)
MAC Drinking water (WHO or EE C)	a5µg/1 a2µg/1	Q.5mg/	50mg/1	0.2mg/l	1 mg/l a.05mg/
MAC raw water	- 5µg/1 1µg/1	4 mg/l	50mg/l	2 mg/l	1 mg/l
Origin	pol lut ion	organic pollution	Fertilizer or NMVW outlet	natural	natural
Undesirable campound C	DOC : humic acids, pesticides, hydrocarbon	NH ₃ /NH ₄ +	NO3.	Fe ²⁺	Mn ²⁺

Condusion and summary : Figure 27: Biological treatment of raw vater meant b drinking water production * some bacteria are specific of iron or manganese, others can oxidise both; many are mixotrophic