Mi6 : disinfection

1. Requirement for one experiment (one group) : testing one disinfection time

- one 200 mL erlen flask containing 1500 E.coli / mL in Ringer
- 13 tubes containing 10mL of sterile Ringer + <u>3 for initial suspension numeration</u>
- one 50 mL flask containing Bleach exactly 150 mg / L
- one 50 mL flask containing $Na_2S_2O_3 0.0028$ mol / L
- 26 tubes containing 20 mL of melting agar (80C) + <u>3 for initial suspension numeration</u>
- 26 sterile empty Petri dishes + <u>3 for initial suspension numeration</u>
- 16 sterile 1mL pipette
- one 0-20µL micropipette, one 0-100 and 0-1000 and sterile tips
- one stop watch

2. Generalities

Watson Chick law governs the action of disinfectants

 C^n . t = - 1/A ln (Nt/No)

C is the disinfectant concentration (mg/L)

t is the action time (min)

No is the initial bacteria concentration

Nt is the final bacteria concentration

Nt/No is the kill rate

A is a constant depending on the micro-organism

N is the dilution constant :

If n > 1, the disinfectant concentration is more important than the action time

If n < 1, the action time is more important

If n=1, the ln of the kill rate is proportional to the product CT: the kill rate logarithm will Double either one double the time or double the concentration

The product CT_{99} , i.e. the CT value to reach in order to obtain a kill rate equal to 0.99, is equal to 0.005mg / L / min for chlorine and E.coli.

3. Operation

The aim of the lesson is to determinate :

- the two constants n and A
- the CT value in order to obtain a 0.99 kill rate

We-ll apply different chlorine concentration to a bacteria suspension (0 to 1 mg / L) and for a constant time (30s, 1 min, 1min and 30s, 2 min)

Chlorine action is stopped by neutralization with thiosulphate

The chlorinated suspension is inoculated in plate agar (2) in order to count bacteria after incubation : **pour plate technique above**

Bacteria are counted before and after each disinfection rate.

General organization : groups of 3 students ; each group tests one action time

0	1	2	3	4	5	6	7	8
			10					
0	0.05	0.1	0.15	0.20	0.25	0.3	0.4	0.5
0	3.25	6.5						32.5
	0 0 0	0 1 0 0.05 0 3.25	$\begin{array}{c cccc} 0 & 1 & 2 \\ \hline \\ 0 & 0.05 & 0.1 \\ \hline \\ 0 & 3.25 & 6.5 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Gently mix and start stop watch : after requested time,

add 100 µl of sterile 0.0028 thiosulphate

Dilution to) 1,	1	1	1	1	1	1	1	1
inoculate:	10								
See above: pou	and								
plate technique	100								

Tube n°	9	10	11	12	13
Vculture mL		I		10	I
TT_{Cl2} mgCl ₂ .L ⁻¹	0.6	0.7	0.8	0.9	1
V bleach 150 mg / L					65
(μL)					

Gently mix and start stop watch : : after requested time,

add 100 µl of sterile 0.0028 thiosulphate

Dilution to	1	1	1	1	1
inoculate:					
See above: pour					
plate technique					

Pour-plate technique :

Place nutrient agar deeps into the boiling water bath for melting. Remove this tube and cool to 45° C.

Introduce, with a sterile transfer pipette, 1 mL of the sample of tested water in the bottom of a sterile Petri dish

Pour the liquid agar medium (40 to 50 $^{\circ}$ C) in this Petri dish and rotate gently in order to obtain a regular repartition of the colonies ; harden the medium on a horizontal and cold surface.

Label the side of the Petri dish (name, date, temperature of incubation).

Turn over the Petri dish and incubate your pour-plate at 22°C during 72h or at 36°C during 24h.

Numeration of the colonies: Consider the Petri dish which present less than 300 colonies.

Each colony has been formed from the development of a unique cell.

If N is the number of colonies counted in a Petri dish containing the dilution 10^{n} :

C (microorganisms / mL) = N / 10^{n}

Ex:

a) 102 colonies counted in the Petri dish seeded with non diluted sample of tested water : $C = 102 / 10^0 = 102$ microorganisms / mL b) 68 colonies counted in 10^{-4} dilution plate (1 : 10,000) :

 $C = 68 / 10^{-4} = 680,000 \text{ microorganisms} / \text{mL}$

 $<\!\!\!<$ one colony can be formed from the development of two cells or more: sometimes, the viable number is expressed in terms of colony forming units (CFUs) : 102 or 680,000 CFUs / mL.

The set of two agar plates per dilution, you can add the number of colonies and divide this number by the sum of the poured volumes:

Dilution / poured	Number of	Number of	conclusion
volume equivalent	colonies	colonies in plate 2	
(mL)	in plate 1		
$10^{0} / 1$	Too numerous to	Too numerous to	<i>Non valid (>300)</i>
	count	count	
$10^{-1} / 0.1$	332	303	Non valid
$10^{-2} / 0.01$	45	51	96
10 ⁻³ / 0.001	6	4	10
10 ⁻⁴ / 0.0001	1	1	2

C = [96+10+2] / (0.01 + 0.001 + 0.0001) = 9729 CFUs / mL

 $\label{eq:second} \begin{array}{l} \underline{4. \ Report} \\ \hline Indicate in a table all your results, i.e. the bacterial counts \\ Save the other groups results \\ \hline Indicate the initial bacteria concentration \\ \hline Plot ln (N_t / N_0) = f(chlorine rate) for each tested time \\ \hline Calculate A and n \\ \hline Calculate the CT value such as the kill rate is equal to 0.99 \end{array}$