Activated sludge : sizing

<u>1. Flow sheet</u>

2. Sizing

code	general data	more specific data
D1	tank for concentrated raw	100 L
	water	
D2	tank for raw water	1000 L
D3	aeration tank	Plexiglas, cylinder, 400L
D4	settling tank	plexiglas, 150L, , cylindroconical, surface 0.8m ²
D5	tank for treated water	plexiglas, 40L, 4 baffles
G1	magnet drive gear pump for	0-60L/h ;
	raw water	Fluid-o-Tech srl
		20143 Milano-Via Lombardini,6/a
		tel (39)028360451
		fzx (02)8375397
FI1	flowmeter for raw water	transmitter, magnetic induction electronic
		indicator, 0- 60L/h
		Endress Hauser Promag 30
FC1	flow control	
G2	magnet drive gear pump for	0-60L/h
	sludge recirculation	
FI2	flowmeter for sludge	transmitter, magnetic induction electronic
	recirculation	indicator, 0- 60L/h
FC2	flow control	
G3	dosing (metering) pump for	0-10L/h
	concentrated raw water	
P1	air compressor	maximum flow ; 1.5Nm ³ / h
FI3	flowmeter for air	electric transmitter, scale 0-1500Nl/h
		calibration : 600mm H ₂ O
FV3	electric valve for inlet air flow	
	regulation in P1	
M1	moto agitator for aeration tank	
EV1	electrovalve for drinking water	
	inlet	
PH	pH meter	Endress Hauser
O2	Oxymeter	Endress Hauser
LT1	electronic indicator for High	
	and Low level in D2	

T	2120	witton	in h	luc	some	addrassas	or	firme	namos	that	could	ha	usoful	
1	ve	written,	m v	ue,	some	uuuresses	01	Jums	numes	mai	couia	ve	usejui	

3. Preparation

This pilot could be simplified : pH and oxygen can be measured without those probes.
The most important is to have a large autonomy with inlet raw water in the aeration tank ;
G1 pumps 10L/h and then D2 is empty in 4 days (100h) !
here is our method :

Hypotheses :

 $\label{eq:VD} \begin{array}{l} \hline F/M \ ratio = 0.1 \ kg \ BOD \ / \ MLSS \ / \ d \ \ (very \ low \ load) \\ V_{D3} = 400 \ L \\ [VSS] = 1 \ g/L \\ q_{v \ G1} = 10 \ L/h = 240 \ L/d \\ that \ is \ 0.04 \ kg \ BOD \ / \ d \ / \ 240 \ L \\ and \ \ BOD_{inlet \ raw \ water} = 0.04 \ / \ 240 = 166 \ mg \ O_2 \ \ / \ L \ with \ methanol : \end{array}$

 $CH_{3}OH + 3/2 O_{2} \longrightarrow CO_{2} + H_{2}O$ $32 g \quad 48 g$ $0.66g \quad 1g$ $1g \quad 1.5 g COD$ and the ratio COD / BOD for methanol = 1.4 then : 1 g BOD = 1g methanol now, d_{methanol} = 0.7 **then 1g BOD = 1g methanol = 1.42 ml methanol**

then BOD_{inlet raw water} = $166 \text{ mg O}_2 / \text{L} = 0.237 \text{ ml methanol} / \text{L}$

pilot flow sheet :

D2 is empty in 4 days : low level LL is reached (level controller) : then 4L from D1 are injected in D2 and in the same time D2 is filling with drinking water (the peristaltic pump G3 is programmed to inject during a fixed time, with a fixed flow, every 4 days) : D1 concentrated pollution is diluted 240 times in D2 ; this injection stops when HL is reached : we have 100 days of autonomy with D1.

Now, how to prepare concentrated pollution in D1?

We've chosen a ratio BOD / N / P = 100 / 10 / 2 to study nitrification et to check assimilation :

		BOD	Ν	Р	methanol	NH ₄ Cl	Na ₂ HPO ₄
		mgO_2 / L	mg/L	mg/L	L	g	g
240	D1				5.7	1520	361
	complete						
(until						
	100L with						
	drinking						
	water						
/	D2	166	16.6	3.32			

 $\frac{\text{calculation for NH}_4\text{Cl}:}{0.166 \text{ x } 240 = 3.98 \text{ gN} / \text{L}}$ then 398 gN / 100L or 1520 g NH₄Cl / 100 L in D1

for phosphorus salt : 0.332 * 240 = 0.79 g P/Lthen 79 g P/100L that is 361 g Na₂HPO₄ / 100L in D1

We can add different salts (FeCl_{3,} MgSO₄, CaCl₂...) to complete D1...but we may have problems with dissolution.

Seeding :

Lyophilised sludge (Biolen IG 30, Gamlen industry : see our fold called "biorequirement") or real activated sludge (with the risk of integrating filamentous bacteria or sand which could clog the pumps)